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Abstract. We give a construction of p orthogonal Latin p-dimensional cubes (or Latin
hypercubes) of order n for every natural number n 6= 2, 6 and p > 2. Our result generalizes
the well known result about orthogonal Latin squares published in 1960 by R.C. Bose,
S. S. Shikhande and E.T. Parker.
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In 1960, R. C. Bose, S. S. Shikhande and E.T. Parker [1] proved that two orthog-

onal Latin squares of order n exist if and only if n 6= 2, 6. (For more information
about these topics see [2] and [3].)

A generalization of Latin squares are Latin p-dimensional cubes (sometimes called

Latin hypercubes). In this paper we generalize the well know result from [1] into
p-dimensional space for every natural number p.

Definition. A Latin p-dimensional cube of order n is a p-dimensional matrix

Qp,n = |q(i1, i2, . . . , ip) ; 1 6 i1, i2, . . . , ip 6 n|,

such that every row is a permutation of the set of natural numbers 1, 2, . . . , n. By

a row of Qp,n we mean an n-tuple of elements q(i1, i2, . . . , ip) which have identical
coordinates at p− 1 places.

Definition. A p-tuple of Latin p-dimensional cubes

[Qp,n
k = |qk(i1, i2, . . . , ip) ; 1 6 i1, i2, . . . , ip 6 n|, k = 1, 2, . . . , p]
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of order n is called orthogonal, if whenever i1, i2, . . . , ip, i
′
1, . . . , i

′
p ∈ {1, 2, . . . , n} are

such that

qk(i1, i2, . . . , ip) = qk(i′1, i
′
2, . . . , i

′
p) for all k = 1, 2, . . . , p,

then we must have ik = i′k for all k = 1, 2, . . . , p.

The construction of a p-tuple of orthogonal Latin p-dimensional cubes is contained

in the proof of the following theorem.

Theorem. A p-tuple of orthogonal Latin p-dimensional cubes Qp,n
k of order n

exists for every natural number n 6= 2, 6 and every natural number p > 2.
���������

. Let Rn = |r(i1, i2); 1 6 i1, i2 6 n| and Sn = |s(i1, i2)| be two orthogo-
nal Latin squares of order n. They will have a crucial role in our construction of p
orthogonal Latin p-dimensional cubes Qp,n

k , k = 1, 2, . . . , p. The k-th cube arises

using the square Rn (k − 1)-times and the square Sn (p− k)-times.
We define the k-th Latin p-dimensional cube

Qp,n
k = |qk(i1, i2, . . . , ip)|

of order n by the following relation

qk(i1, . . . , ip)

= r(i1, r(i2, r(i3, . . . , r(ik−1, s(ik, s(ik+1, . . . , s(ip−2, s(ip−1, ip)) . . .))) . . .)))

for every 1 6 i1, i2, . . . , ip 6 n.
1. Evidently, for every k = 1, 2, . . . , p, the set

{qk(i1, i2, . . . , ij−1, ij , ij+1, . . . , ip) ; ij = 1, 2, . . . , n}

is equal to the set {1, 2, . . . , n}. From this it follows thatQp,n
k is a Latin p-dimensional

cube for all k.
2. Suppose that

(Ek) qk(i1, i2, . . . , ip) = qk(i′1, i
′
2, . . . , i

′
p) for all k = 1, 2, . . . , p.

From (E1) and (E2) it follows that

s(i1, s(i2, s(i3, . . . , s(ip−1, ip) . . .))) = s(i′1, s(i
′
2, s(i

′
3, . . . , s(i

′
p−1, i

′
p) . . .))),

r(i1, s(i2, s(i3, . . . , s(ip−1, ip) . . .))) = r(i′1, s(i
′
2, s(i

′
3, . . . , s(i

′
p−1, i

′
p) . . .))).
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Because Rn and Sn are orthogonal Latin squares, we have

i1 = i′1

and

s(i2, s(i3, . . . , s(ip−1, ip) . . .)) = s(i′2, s(i
′
3, . . . , s(i

′
p−1, i

′
p) . . .)).

Replace i′1 by i1 in (Ek), k = 1, 2, . . . , p. From (E2) and (E3) it follows that

s(i2, s(i3, . . . , s(ip−1, ip) . . .))) = s(i′2, s(i
′
3, . . . , s(i

′
p−1, i

′
p) . . .))),

r(i2, s(i3, . . . , s(ip−1, ip) . . .))) = r(i′2, s(i
′
3, . . . , s(i

′
p−1, i

′
p) . . .))),

and so

i2 = i′2

and

s(i3, s(i4, . . . , s(ip−1, ip) . . .)) = s(i′3, s(i
′
4, . . . , s(i

′
p−1, i

′
p) . . .)).

Continuing in this manner, after (p − 1) steps from (Ep−1) and (Ep) we get

s(ip−1, ip) = s(i′p−1, i
′
p),

r(ip−1, ip) = r(i′p−1, i
′
p).

From the assumption that Rn and Sn are orthogonal we get

i′p−2 = ip−2 and i′p−1 = ip−1,

which completes the proof of orthogonality. �

Remark 1. Our construction is based on a pair of orthogonal Latin squares and
so we give no information about Latin p-dimensional cubes of order 2 and 6.

Remark 2. If n is odd then Rn = |r(i1, i2) = (i1 + i2) (mod n); 1 6 i1, i2 6 n|
and Sn = |s(i1, i2) = (i1−i2) (mod n)| are mutually orthogonal Latin squares. Using
these two squares the formula for making a magic p-dimensional cube of odd order
was derived. (See [4].)
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